Kinetic Modelling of Oil Extraction from Neem Seed

Ogunleye O.O.¹*, T. L. Adewoye² and T.O. Salawudeen¹

¹Department of Chemical Engineering, Faculty of Engineering, Ladoke Akintola University of

Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria.

²Department of Chemical Engineering, Faculty of Engineering, University of Ilorin, P.M.B. 1515,

Ilorin –Kwara State, Nigeria.

Abstract

The suitability of three different types of extraction kinetic models (one- step, two -step and three -

step models) for neem oil was investigated in this study. Solvent extraction using n-hexane at

temperatures range between 303K and 323 K; 360minutes of extraction time were experimented

and the oil yield calculated. The three models were fitted to the experimental data obtained. The oil

yield increased from 31.80 % to 41% at 303K and 323 K, respectively and the equilibrium was

reached at 300 minutes. The saturation extraction capacity (C_s) increased from 35.0631 gL⁻¹ to

 $42.9698 \text{ gL}^{-1} 303K$ and 323 K, respectively for one step model and the R^2 ranged between 0.9874

and 0.9998. The washing mass transfer coefficient (C_e^W) of oil yields at equilibrium accounts for

about 60% of the extraction in the two-step model and the R^2 ranged between 0.9840 and 0.9960.

The first coefficient of diffusion (w_e^{dl}) in the three-step model had is higher value than the second

 (w_e^{d2}) and R^2 ranged between 0.9920 and 0.9980. The three-step model best fitted the experimental

data.

Keywords: Extraction, kinetic, equilibrium, diffusion, saturation.

*E-mail: ooogunleye@yahoo.com

Received: 2014/07/28

Accepted: 2014/09/04

DOI: http://dx.doi.org/10.4314/njtr.v9i2.7